POLS/CS\&SS 503:
 Advanced Quantitative Political Methodology MATRIX ALGEBRA, LINEAR REGRESSION

April 7, 2015

Jeffrey B. Arnold
W
UNIVERSITY of WASHINGTON
DEPARTMENT OF POLITICAL SCIENCE

Agenda

- Linear regression as finding a "best" line
- Linear regression as the conditional expectation function
- How linear regression relates to the normal distribution

What is regression?

Regression

distribution of a response (outcome) variable Y - or summary of that distribution - as a function of explanatory variables X_{1}, \ldots, X_{k}.

Ordinary Least Squares
Finds a $\hat{Y}=\boldsymbol{X} \boldsymbol{B}$ that minimizes $\left.\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}\right)$. This estimates a linear conditional expectation function $E\left(Y \mid X_{1}, \ldots, X_{k}\right)$.

OLS Objective Function One X

Find the line

$$
\hat{Y}=A+B X
$$

such that

$$
A, B=\underset{A, B}{\arg \min } S(A, B)
$$

where

$$
S(A, B)=\sum_{i} E_{i}^{2}=\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i}\left(Y_{i}-A-B X_{i}\right)^{2}
$$

How do we minimize this?

What does the OLS objective function look like?

Data generated by $Y_{i}=1+2 X_{i}+E_{i}$. Lines are $A=1, B=2$, and $A=0, B=0$.

$\sum E_{i}^{2}$ as a function of A and B

Least squares is the minimum of this function

Finding the best A, B in Least Squares

 One XTo minimize, set partial derivatives equal to 0 and solve:

$$
\begin{aligned}
& \frac{\partial S(A, B)}{\partial A}=\sum(-1)(2)\left(Y_{i}-A-B X_{i}\right)=0 \\
& \frac{\partial S(A, B)}{\partial B}=\sum\left(-X_{i}\right)(2)\left(Y_{i}-A-B X_{i}\right)=0
\end{aligned}
$$

Rearrange to get

$$
\begin{aligned}
& A=\bar{Y}-B \bar{X} \\
& B=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum\left(X_{i}-\bar{X}\right)^{2}}=\frac{\mathrm{c}(X, Y)}{\mathrm{V}(X)}
\end{aligned}
$$

Implications of the OLS Solution

Least squares A and B

$$
\begin{aligned}
& A=\bar{Y}-B \bar{X} \\
& B=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum\left(X_{i}-\bar{X}\right)^{2}}=\frac{\mathrm{c}(X, Y)}{\mathrm{v}(X)}
\end{aligned}
$$

- \bar{X}, \bar{Y} is in the regression line
- $\sum X_{i} E_{i}=0$

$$
\begin{aligned}
\sum X_{i} E_{i} & =\sum X_{i}\left(Y_{i}-A-B X_{i}\right) \\
& =\sum X_{i} Y_{i}-A \sum X_{i}-B \sum X_{i}=0
\end{aligned}
$$

- $\sum \hat{Y}_{i} E_{i}=0$
- Errors E uncorrelated with \hat{Y} and X

OLS Objective Function

Multiple X
Find plane

$$
Y=A+B_{1} X_{1}+B_{2} X_{2}+\cdots+B_{k} X_{k}
$$

such that

$$
A, B_{1}, \ldots, B_{k}=\underset{A, B_{1}, \ldots, B_{k}}{\arg \min } S\left(A, B_{1}, \ldots, B_{k}\right)
$$

where

$$
\begin{aligned}
S\left(A, B_{1}, \ldots, B_{k}\right) & =\sum_{i} E_{i}^{2}=\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2} \\
& =\sum_{i}\left(Y_{i}-A-\sum_{j=1}^{k} B_{j} X_{i, j}\right)
\end{aligned}
$$

How do we minimize this?

Finding the best A, B in Least Squares Regression

 Multiple XSet partial derivatives equal to 0 and solve system of equations for

$$
\begin{aligned}
\frac{\partial S\left(A, B_{1}, B_{2}, \ldots, B_{k}\right)}{\partial A} & =\sum(-1)(2)\left(Y_{i}-A-B X_{i}\right)=0 \\
\frac{\partial S\left(A, B_{1}, B_{2}, \ldots, B_{k}\right)}{\partial B_{1}} & =\sum\left(-X_{i, 1}\right)(2)\left(Y_{i}-A-B_{1} X_{i, 1}-\cdots-B_{2} X_{i, k}\right)=0 \\
\vdots & =\vdots \\
\frac{\partial S\left(A, B_{1}, B_{2}, \ldots, B_{k}\right)}{\partial B_{k}} & =\sum\left(-X_{i, k}\right)(2)\left(Y_{i}-A-B_{1} X_{i, 1}-\cdots-B_{2} X_{i, k}\right)=0
\end{aligned}
$$

Not as easy ...

Linear Regression in Matrix Form

Scalar representation

$$
Y_{i}=B_{0}+B_{1} X_{i, 1}+B_{2} X_{i, 2}+\ldots B_{k} X_{i, k}+E_{i}
$$

Equivalent matrix representation

$$
\underset{n \times 1}{\boldsymbol{y}}=\underset{n \times(k+1)}{\boldsymbol{X}} \quad \underset{(k+1) \times 1}{\boldsymbol{b}}+\underset{n \times 1}{\boldsymbol{e}}
$$

or

$$
\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & X_{1,1} & X_{2,1} & \cdots & X_{k, 1} \\
1 & X_{1,2} & X_{2,2} & \cdots & X_{k, 2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & X_{1, n} & X_{2, n} & \cdots & X_{k, n}
\end{array}\right]\left[\begin{array}{c}
B_{0} \\
B_{1} \\
\vdots \\
B_{k}
\end{array}\right]+\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

Linear Regression in Matrix Form

Objective Function

The linear regression is

$$
y=\boldsymbol{X} \boldsymbol{b}+e
$$

Want to find the b that minimizes the squared errors:

$$
\underset{\boldsymbol{b}}{\arg \min } S(\boldsymbol{b})
$$

where

$$
\begin{aligned}
S(\boldsymbol{b}) & =\sum E_{i}^{2}=\boldsymbol{e}^{\prime} \boldsymbol{e} \\
& =(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b})
\end{aligned}
$$

Why does \boldsymbol{e} need to be transposed?

Linear Regression in Matrix Form

Transpose of Sums

$$
\begin{gathered}
(A+B)^{\prime}=A^{\prime}+B^{\prime} \\
\left(\left[\begin{array}{c}
10 \\
3
\end{array}\right]+\left[\begin{array}{l}
2 \\
6
\end{array}\right]\right)^{\prime}=? \\
?=?
\end{gathered}
$$

Linear Regression in Matrix Form

Transpose of a product

$$
\begin{aligned}
(\boldsymbol{X} \boldsymbol{B})^{\prime} & =\boldsymbol{B}^{\prime} \boldsymbol{X}^{\prime} \\
{\left[\begin{array}{ll}
2 & 1 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right] } & =? \\
? & =?
\end{aligned}
$$

Simplify $\boldsymbol{e}^{\prime} \boldsymbol{c}$

$$
\begin{aligned}
\boldsymbol{e}^{\prime} \boldsymbol{e} & =(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b}) & & \\
& =\left(\boldsymbol{y}^{\prime}-(\boldsymbol{X} \boldsymbol{b})^{\prime}\right)(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b}) & & \text { distribute the } \\
& =\left(\boldsymbol{y}-\boldsymbol{b}^{\prime} \boldsymbol{X}\right)(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b}) & & \text { substitute } \boldsymbol{b}^{\prime} \\
& =\boldsymbol{y}^{\prime} \boldsymbol{y}-\boldsymbol{b}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{y}-\boldsymbol{y}^{\prime} \boldsymbol{X} \boldsymbol{b}+\boldsymbol{b}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{b} & & \text { multiply out } \\
& =\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \boldsymbol{b}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{y}+\boldsymbol{b}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{b} & & \text { simplify }
\end{aligned}
$$

- To minimize need to calculate derivative of $\boldsymbol{e}^{\prime} \boldsymbol{e}$ with respect to \boldsymbol{b}.
- Need two know two things
- derivative of scalar with respect to vector $\left(2 \boldsymbol{b}^{\prime} X^{\prime} y\right)$
- derivative of quadratic form $\left(\boldsymbol{b}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{b}\right)$

What is the derivative of scalar with respect to vector

- Need to take derivative of $\boldsymbol{e}^{\prime} \boldsymbol{e}$ with respect to \boldsymbol{b} to find \boldsymbol{b} that min the sum of squared.
- A derivative of a scalar with respect to a vector

$$
\begin{aligned}
y=\boldsymbol{a}^{\prime} \boldsymbol{x} & =a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \\
\frac{\partial y}{\partial \boldsymbol{x}} & =\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]^{\prime} \\
\frac{\partial y}{\partial \boldsymbol{x}} & =\boldsymbol{a}
\end{aligned}
$$

Derivative of a quadratic form

- Equivalent to x^{2} is inner product $\boldsymbol{x}^{\prime} \boldsymbol{x}$
- Vector analogue of $a x^{2}$ is $\boldsymbol{x}^{\prime} \boldsymbol{X} \boldsymbol{x}$, where A is $n \times n$ matrix

$$
\begin{aligned}
\frac{\partial a x^{2}}{\partial x} & =2 a x \\
\frac{\partial \boldsymbol{x}^{\prime} \boldsymbol{A} \boldsymbol{x}}{\partial \boldsymbol{x}} & =2 \boldsymbol{A} \boldsymbol{x}
\end{aligned}
$$

OLS in Matrix Form

Minimizing the objective function

1. Take partial derivative of $S(\boldsymbol{b})$:

$$
\begin{aligned}
\frac{\partial S(\boldsymbol{b})}{\boldsymbol{b}} & =\frac{\partial}{\boldsymbol{b}}\left(\boldsymbol{y}^{\prime} \boldsymbol{y}-2 \boldsymbol{b}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{y}+\boldsymbol{b}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{b}\right) \\
& =0-\left(2 \boldsymbol{y}^{\prime} \boldsymbol{X}\right)+2\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right) \boldsymbol{b}
\end{aligned}
$$

2. Set to 0 , and solve for \boldsymbol{b} :

$$
\begin{aligned}
\boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{b} & =\boldsymbol{X}^{\prime} \boldsymbol{y} \\
\boldsymbol{b} & =\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}
\end{aligned}
$$

What $\left(X^{\prime} X\right)^{-1}$ implies

- For \boldsymbol{b} to be defined $\left(X^{\prime} X\right)^{-1}$ needs to exist
- $X^{\prime} X$ must be full rank
- rank of $X^{\prime} X$ is the same as the rank of X
- The rank of X is between n and $k+1$, means that $n \geq k+1$ (obs > variables)
- $k+1$ columns of X must be linearly indepdendent?
- Can you have a full set of dummies?
- Can you include a variable that is always equal to 3 ?

Takeaways

- Linear regression is the A, B_{1}, \ldots, B_{k} that solve $\arg \min _{A, B_{1}, \ldots, B_{k}} \sum E_{i}^{2}$
- Solving for linear regression coefficients is relatively easy; linear equations; there's an explicit solution. No iteration required.

Linear Regression and CEF

Linear Regression and Normal Distribution

Interpretation

CEF justification for linear regression justification

- Conditional Expectation Function is $\mathrm{E}\left(Y_{i} \mid X_{i}=x\right)$ for all x
- The CEF is the Min Mean Squared Error (MMSE) predictor of Y_{i} given X_{i}
- If the population CEF is linear, then the least squares population regression is the CEF
- If the population CEF is not linear, then the least squares line is the MMSE linear estimate of the CEF.
- See Angrist and Pischke, Ch 3.1

Linear Regression and CEF

Linear Regression and Normal Distribution

Interpretation

But I thought linear regression had to do with the normal distribution?

- Linear regression often presented as

$$
y_{i}=X_{i} \beta+\epsilon_{i} \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- Why? We haven't had to assume normal distributions before now.
- Helps with statistical inference results.
- However, the CLT handles asymptotic sampling distribution of parameters

Linear Regression and CEF

Linear Regression and Normal Distribution

Interpretation

Interpreting Regression Coefficients β

How the average outcome variable differs, on average:
predictive between groups of units that differ by 1 in the relevant explanatory variable while being identical in all other explanatory variables the same
counterfactual in the same individual when chaning the relevant explanatory variable 1 unit while holding all other explanatory variables the same
See Gelman and Hill, p. 34; Fox, p. 81

References

- Some slides derived from Christopher Adolph Linear Regression in Matrix Form / Propoerties \& Assumptions of Linear Regression. Used with permission.
- Material included from
- Fox Ch 2, 5, 9.1-9.2
- Angrist and Pischke, Chapter 3.1
- Gelman and Hil, Chapter 2

