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Agenda

• Linear regression as finding a “best” line

• Linear regression as the conditional expectation function

• How linear regression relates to the normal distribution
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What is regression?

Regression

distribution of a response (outcome) variable Y — or summary of that
distribution — as a function of explanatory variablesX1, . . . , Xk.

Ordinary Least Squares

Finds a Ŷ = XB that minimizes
∑

(Yi − Ŷi)
2). This estimates a linear

conditional expectation functionE(Y |X1, . . . , Xk).
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OLS Objec ve Func on
OneX

Find the line
Ŷ = A+BX

such that
A,B = argmin

A,B
S(A,B)

where

S(A,B) =
∑
i

E2
i =

∑
i

(Yi − Ŷi)
2 =

∑
i

(Yi −A−BXi)
2

How do we minimize this?

4 / 27



What does the OLS objec ve func on look like?
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Data generated by Yi = 1 + 2Xi + Ei. Lines areA = 1, B = 2, and
A = 0, B = 0.
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∑
E2

i as a func on ofA andB
Least squares is the minimum of this func on
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Finding the bestA,B in Least Squares
OneX

To minimize, set partial derivatives equal to 0 and solve:

∂S(A,B)

∂A
=

∑
(−1)(2)(Yi −A−BXi) = 0

∂S(A,B)

∂B
=

∑
(−Xi)(2)(Yi −A−BXi) = 0

Rearrange to get

A = Ȳ −BX̄

B =

∑
(X − X̄)(Y − Ȳ )∑

(Xi − X̄)2
=

C(X,Y )

V(X)
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Implica ons of the OLS Solu on
Least squaresA andB

A = Ȳ −BX̄

B =

∑
(X − X̄)(Y − Ȳ )∑

(Xi − X̄)2
=

C(X,Y )

V(X)

• X̄, Ȳ is in the regression line

•
∑

XiEi = 0∑
XiEi =

∑
Xi(Yi −A−BXi)

=
∑

XiYi −A
∑

Xi −B
∑

Xi = 0

•
∑

ŶiEi = 0

• ErrorsE uncorrelated with Ŷ andX
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OLS Objec ve Func on
Mul pleX

Find plane
Y = A+B1X1 +B2X2 + · · ·+BkXk

such that

A,B1, . . . , Bk = argmin
A,B1,...,Bk

S(A,B1, . . . , Bk)

where

S(A,B1, . . . , Bk) =
∑
i

E2
i =

∑
i

(Yi − Ŷi)
2

=
∑
i

(Yi −A−
k∑

j=1

BjXi,j)

How do we minimize this?
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Finding the bestA,B in Least Squares Regression
Mul pleX

Set partial derivatives equal to 0 and solve system of equations for

∂S(A,B1, B2, . . . , Bk)

∂A
=

∑
(−1)(2)(Yi −A−BXi) = 0

∂S(A,B1, B2, . . . , Bk)

∂B1
=

∑
(−Xi,1)(2)(Yi −A−B1Xi,1 − · · · −B2Xi,k) = 0

... =
...

∂S(A,B1, B2, . . . , Bk)

∂Bk
=

∑
(−Xi,k)(2)(Yi −A−B1Xi,1 − · · · −B2Xi,k) = 0

Not as easy …

10 / 27



Linear Regression in Matrix Form

Scalar representation

Yi = B0 +B1Xi,1 +B2Xi,2 + . . . BkXi,k + Ei

Equivalent matrix representation

y
n×1

= X
n×(k+1)

b
(k+1)×1

+ e
n×1

or 
Y1
Y2
...
Yn

 =


1 X1,1 X2,1 · · · Xk,1

1 X1,2 X2,2 · · · Xk,2
...

...
...

. . .
...

1 X1,n X2,n · · · Xk,n



B0

B1
...

Bk

+


E1

E2
...

En
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Linear Regression in Matrix Form
Objec ve Func on

The linear regression is
y = Xb+ e

Want to find the b that minimizes the squared errors:

argmin
b

S(b)

where

S(b) =
∑

E2
i = e′e

= (y −Xb)′(y −Xb)

Why does e need to be transposed?
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Linear Regression in Matrix Form
Transpose of Sums

(A+B)′ = A′ +B′([
10
3

]
+

[
2
6

])′
=?

? =?
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Linear Regression in Matrix Form
Transpose of a product

(XB)′ = B′X ′[
2 1
5 6

] [
3
4

]
=?

? =?
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Simplify e′c

e′e = (y −Xb)′(y −Xb)

= (y′ − (Xb)′)(y −Xb) distribute the transpose

= (y − b′X)(y −Xb) substitute b′X ′ for (Xb)′

= y′y − b′X ′y − y′Xb+ b′X ′Xb multiply out

= y′y − 2b′X ′y + b′X ′Xb simplify

• To minimize need to calculate derivative of e′e with respect to b.

• Need two know two things

• derivative of scalar with respect to vector (2b′X ′y)
• derivative of quadratic form (b′X ′Xb)
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What is the deriva ve of scalar with respect to vector

• Need to take derivative of e′e with respect to b to find b that min the
sum of squared.

• A derivative of a scalar with respect to a vector

y = a′x = a1x1 + a2x2 + · · ·+ anxn

∂y

∂x
=

[
a1 a2 . . . an

]′
∂y

∂x
= a
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Deriva ve of a quadra c form

• Equivalent to x2 is inner product x′x

• Vector analogue of ax2 is x′Xx, whereA is n× nmatrix

∂ax2

∂x
= 2ax

∂x′Ax

∂x
= 2Ax
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OLS in Matrix Form
Minimizing the objec ve func on

1. Take partial derivative of S(b):

∂S(b)

b
=

∂

b
(y′y − 2b′X ′y + b′X ′Xb)

= 0− (2y′X) + 2(X ′X)b

2. Set to 0, and solve for b:

X ′Xb = X ′y

b = (X ′X)−1X ′y
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What (X ′X)−1 implies

• For b to be defined (X ′X)−1 needs to exist

• X ′X must be full rank

• rank ofX ′X is the same as the rank ofX

• The rank ofX is between n and k + 1, means that n ≥ k + 1 (obs >
variables)

• k + 1 columns ofX must be linearly indepdendent?
• Can you have a full set of dummies?
• Can you include a variable that is always equal to 3?
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Takeaways

• Linear regression is theA,B1, . . . , Bk that solve
argminA,B1,...,Bk

∑
E2

i

• Solving for linear regression coefficients is relatively easy; linear
equations; there’s an explicit solution. No iteration required.

20 / 27



Linear Regression and CEF

Linear Regression and Normal Distribution

Interpretation
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CEF jus fica on for linear regression jus fica on

• Conditional Expectation Function is E(Yi|Xi = x) for all x

• The CEF is the Min Mean Squared Error (MMSE) predictor of Yi given
Xi

• If the population CEF is linear, then the least squares population
regression is the CEF

• If the population CEF is not linear, then the least squares line is the
MMSE linear estimate of the CEF.

• See Angrist and Pischke, Ch 3.1

22 / 27



Linear Regression and CEF

Linear Regression and Normal Distribution

Interpretation
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But I thought linear regression had to do with the
normal distribu on?

• Linear regression often presented as

yi = Xiβ + ϵi ϵi ∼ N(0, σ2)

• Why? We haven’t had to assume normal distributions before now.

• Helps with statistical inference results.

• However, the CLT handles asymptotic sampling distribution of
parameters
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Linear Regression and CEF

Linear Regression and Normal Distribution

Interpretation
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Interpre ng Regression Coefficients β

How the average outcome variable differs, on average:

predictive between groups of units that differ by 1 in the relevant
explanatory variable while being identical in all other
explanatory variables the same

counterfactual in the same individual when chaning the relevant
explanatory variable 1 unit while holding all other
explanatory variables the same

See Gelman and Hill, p. 34; Fox, p. 81
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