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Coeficients of a simple regression

Yi = A+BXi + Ei

The least squares coefficients are

A = Ȳ +BX̄

B =

∑
i(Xi − X̄)(Yi − Ȳ )∑

i (Xi − X̄)
2

• StateB in terms of covariance ofX and Y and variance?

• StateB in terms of correlation ofX and Y and standard deviations?

• What values canB take if SD(X) = SD(Y ) = 1?

• What is Ŷ forX = X̄?

• What happens toB as V(X) decreases? V(Y ) decreases? If
V(X) = 0
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Least squares when VX = 0
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Least squares coefficients are uniden fied if Vx = 0

• If Vx = 0 then least squares solution is unidentified

• There is no unique value ofA,B that argminA,B

∑
iE

2
i

y <- c(1, 2, 3, 4, 5)
x <- 1
ybar <- mean(y)
ybar

## [1] 3

# A = 2, B = 1
sum((y - 2 - 1 * x) ^ 2)

## [1] 10

# A = -7, B = 10
sum((y + 7 - 10 * x) ^ 2)

## [1] 10
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Coefficients of a mul ple regression

Y⃗ = Xb+ e

• b = (X ′X)
−1

X ′y. Not that intuitive!

• Coefficient bj is

bk =
C(y, x̃j)

V(x̃k)

• Where x̃j are the residulals of xj on allXh where h ̸= j

X̃j,i = Xj,i − Ã−
∑
h̸=j

B̃hXh
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Regression example

See multiple_regression_anatomy.R
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Least Squares coefficients are uniden fied if
(X ′X)−1 does not exist

• Common cases in which (X ′X)−1 does not exist:
• Number of observations less than k + 1
• Xk is constant
• Xk is a linear function of other variables: Xk =

∑
j ̸=k cjXj .

• dummy variables for all categories of a categorical variable
• variable multiplied by the constant of another variable
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Which of these would be cases of collinearity and
why?

• There is a variable that takes values “white”, “black”, “hispanic”,
“asian”, “other”. You include a dummy variable for each category.

• GDP, GDP per capita, and population

• Log GDP, log GDP per capita, and log population

• GDP in millions of dollars; GDP in trillions of dollars

• GDP measured in nominal value; GDP measured in real terms

• Regression with 3 variables and 4 observations
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Popula on model in a simple regression

Yi = α+ βXi + ϵi

Assumptions for statistical inference

1. X is not invariant: V(X) > 0

2. Linearity. Average value of error given x is 0. E(ϵi) = E(ϵi|xi) = 0

µi = E(Yi) = E(Y |Xi) = E(α+ βXi + ϵi) = α+ βxi

3. Constant variance Variance of the errors is the same regardless of the value
ofX

V(Y |xi) = E(ϵ2i ) = σ2
ϵ

4. Independence: Observations are sampled independently. Cor(ϵi, ϵj) = 0
for all i ̸= j.

5. FixedX orX measured without error and independent of the error.

6. Errors are normally distributed ϵi ∼ N
(
0, σ2

ϵ

)
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Popula on model in a mul ple regression

Yi = α+ β1xi,1 + β2xi,2 + · · ·+ βkxi,k + ϵi

Assumptions for statistical inference

1. X is not invariant and noX is a perfect linear function of the others.

2. Linearity. E(ϵi) = 0

3. Constant variance V (ϵi) = σ2
ϵ

4. Independence Observations are sampled independently. Cor(ϵi, ϵj) = 0 for all
i ̸= j.

5. FixedX orX measured without error and independent of the error

6. Normality Errors are normally distributed ϵi ∼ N
(
0, σ2

ϵ

)
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Defini ons

population The observations of interest. May be theoretical

sample The data you have.

parameter A function of the population distribution

statistic A function of the sample

sampling distribution The distribution of a statistic calculated from the
distribution of samples of a given size drawn from a
population.
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See Sampling_Distributions.Rmd
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Sampling Distribu on of Simple Regression
Coefficients

The sampling distributions ofA,B given Yi = α+ βXi + ϵi
• expected values (linearity)

E(A) = α

E(B) = β

• variances (linearity, constant variance, independence)

V(A) =
σ2
ϵ

n
·

∑
x2i∑

(xi − x̄)2

V(B) =
σ2
ϵ∑

(xi − x̄)2
=

σ2
ϵ

n V(x)

• normal distribution (normal errors)

A ∼ N(E(A), V(A))

B ∼ N(E(B), V(B))

• However, sampling distribution to normal as n → ∞ due to Central
Limit Theorem
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Coefficient sampling distribu ons in mul ple
regression

The sampling distributions ofBk given Yi = α+
∑

βjXj,i + ϵi
• Expected value: E(BK) = βk
• Variance:

V(Bj) =
1

(1−R2
j )

σ2
ϵ∑

(xi,j − x̄j)
2

=
σ2
ϵ∑

i (xi,j − x̂i,j)
2

WhereR2
j isR

2 from regression ofXj on otherX , and x̂ij are fitted
values from that regression.

• Normally distributed if errors are normally distributed or as n → ∞.

• b is multivariate normally distributed

b ∼ N
(
β, σ2

ϵ (X
′X)

−1
)
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Let’s define some things

statistic Function of a sample, e.g. Sample mean x̄ = 1
n

∑
xi

parameter Function of the population distribution, e.g. Expected value
µ of the normal distribution.

estimator Method to use a sample statistic (estimate) to infer a
population parameter (estimand)
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How to determine if an es mator is good?

• Is β̂ = (X ′X)
−1

X ′y a good estimator for β?

• Would another estimator be better?

• First, need criteria to by which to judge estimators
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What makes an es mator good?

• Bias

• Variance

• Efficiency (mean squared error)

• Consistency
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Bias and Variance

Bias
On average how far off is the estimator?

bias(β̂) = E(β̂)− β

Variance
Does the estimator give similar results in different samples?

V(β̂) = E
(
(β − E(β̂))

2
)
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Bias and Variance Visualized
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What makes an es mator good?

• Unbiased methods may still miss the truth by a large amount, just
direction not systematic

• Unbiased estimates can be horrible: random draw from numbers
0–24 for time of day

• Biased estimates are not necessarily terrible: a clock that’s 2 minutes
fast
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You may prefer a biased, low variance es mator to an
unbiased, high variance es mator

β
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Mean Squared Error (MSE)

• MSE is
MSE(β̂) = E

(
(β̂ − β)2

)
• MSE trades off bias and variance

MSE(β̂) = E((β̂ − E(β̂))2) + E(E(β̂)− β))2

= V(β̂) +
(
bias(β̂, β)

)2

• root mean squared error (RMSE)
√
MSE: on average how far is an

estimate from the truth

• An efficient estimator has the smallest MSE

• What is the MSE of an unbiased estimator?

MSE(β̂) = V(β̂) +
(
bias(β̂, β)

)2
= V(β̂) + 0 = V(β̂)
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MSE Example

• Suppose population parameter β = 1

• Consider two estimators β̂1 and β̂2.
• β̂1 ∼ N(1, 12)

• β̂2 ∼ N(0.5, 0.52)

• What are the bias, variance, and MSE of each estimator?
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Consistency

• A consistent estimator converges to the parameter value as the
number of observations grows

E(β̂ − β) → 0 as n → ∞

• A concern of econometricians

• May not be as much a concern in finite, small sample sizes

• We will mainly be concerned with efficiency, secondarily with bias,
rarely with consistency

29 / 35



Regression Coefficient Anatomy

Linear Regression Population Model

Sampling Distribution

Estimators and mean squared error

Gauss-Markov Theorem

30 / 35



LS assump ons and consequences of viola ons

Assumption Consequence of violation
1 No perfect collinearity rank(X) = k, k < n Coefficients unidentified
2 X is exogenous E(Xϵ) = 0 Biased, even as n → ∞
3 Disturbances have mean 0 E(ϵ) = 0 Biased, even as n → ∞
4 No serial correlation E(ϵiϵj) = 0, i ̸= j Unbiased but ineff. Wrong se.
5 Homoskedastic errors E(ϵ′ϵ′) = σ2I Unbiased but ineff. Wrong se.
6 Normal errors ϵ ∼ N(0, σ2) se wrong unless n → ∞

Assumptions stronger from top to bottom, 4 and 5 could be combined
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Unbiasedness of LS

• Only need assumptions 1-3 (no collinearity,X exogenous, E(ϵ) = 0

• Start with

β̂ = (X ′X)−1X ′(Xβ + ϵ)

= β + (X ′X)−1X ′ϵ

• Take the expectation

E(β̂) = E(β) + E(X ′X)−1X ′ϵ)

= E(β) +X ′X)−1X ′ E(ϵ)

= E(β)

• Since E(β̂) = E(β), LS is unbiased.
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Gauss-Markov

• If make assumptions 1–5: LS is the best linear unbiased estimator
(BLUE)

• LS estimator is linear because β̂ = My, where
M = (X ′X)

−1
X ′

• best is best mean squared error (MSE).

• If LS is unbiased, then its mean squared error is the same as its …?

• Could exist other non-linear unbiased estimators with smaller MSE,
e.g. Robust regression when population has fat tailed errors

• If errors are Gaussian, LS is Minimum Variance Unbiased (MVU).

• MVU = for all estimators that are unbiased. β̂ has smallest variance
(and MSE).
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• Some slides derived from Christopher Adolph Linear Regression in
Matrix Form / Propoerties & Assumptions of Linear Regression. Used with
permission.
<http://faculty.washington.edu/cadolph/503/topic3.pw.pdf>
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• Fox Ch 6, 9.3
• Angrist and Pischke, Chapter 3
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