POLS/CS\&SS 503:
 Advanced Quantitative Political Methodology BINARY DEPENDENT VARIABLES

May 26, 2015

Jeffrey B. Arnold

Overview

Linear Probability Model

Logit Models

LPM vs. Logit

References

Linear Probability Model

Logit Models

LPM vs. Logit

References

Example of Linear Probability Model

Vote for Bush in U.S. Presidential Election 1992

Residuals in LPM

Vote for Bush in U.S. Presidential Election 1992

Residuals Squared in LPM

Vote for Bush in U.S. Presidential Election 1992

Example of Linear Probability Model

Vote Intention in Chilean Plebiscite in 1973

Residuals in LPM

Vote Intention in Chilean Plebiscite in 1973

Residuals Squared in LPM

Vote Intention in Chilean Plebiscite in 1973

Linear Probability Model

OLS with a binary dependent variable. When $Y_{i} \in\{0,1\}$:

$$
Y_{i}=\alpha+\beta X_{i}+\epsilon_{i}
$$

The expected value is a probability

$$
E\left(Y_{i} \mid X_{i}\right)=\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)=\alpha+\beta X_{i}
$$

Problems with the LPM

- Errors are not normally distributed

$$
\begin{aligned}
& \epsilon_{i}=1-E\left(Y_{i} \mid X_{i}\right)=1-\left(\alpha-\beta X_{i}\right)=1-\pi_{i} \\
& \epsilon_{i}=0-E\left(Y_{i} \mid X_{i}\right)=0-\left(\alpha-\beta X_{i}\right)=-\pi_{i}
\end{aligned}
$$

- Errors have non-constant variance (heteroskedasticity)

$$
V\left(\epsilon_{i}\right)=\pi\left(1-\pi_{i}\right)
$$

- $E\left(Y_{i} \mid X_{i}\right)=\alpha+\beta X_{i}$ can extend beyond $(0,1)$
- Improper specification leads to bias; heteroskedasticity and errors leads to incorrect standard errors.

Linear Probability Model

Logit Models

LPM vs. Logit

References

Logit and Logistic Function

Logit and Logistic Function

Logit Function

Function $(0,1) \rightarrow(\infty,-\infty)$

$$
\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)=\log (p)-\log (1-p)
$$

Interpreted as the log of the odds ratio $(p /(1-p))$.
Logistic or Inverse Logit Function
Function $(\infty,-\infty) \rightarrow(0,1)$

$$
\operatorname{logit}^{-1}(x)=\frac{1}{1+\exp (-x)}=\frac{\exp (x)}{\exp (x)+1}
$$

Logistic and logit functions are inverses of each other

$$
\operatorname{logit}^{-1}(\operatorname{logit}(x))=x
$$

Logit Function

$\operatorname{logit}(p)=\log \left(\frac{p}{1-p}\right)$

Inverse Logit (Logistic) Function

$\operatorname{logit}^{-1}(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1}$

Logit Objective Function

OLS minimizes squared errors

$$
\hat{\beta}=\underset{b}{\arg \min } \sum_{i}\left(y_{i}-X_{i} b\right)^{2}
$$

Logit minimizes a different function

$$
\begin{aligned}
\hat{\beta} & =\underset{b}{\arg \min } \sum_{i}\left(y_{i} \log P_{i}+\left(1-y_{i}\right) \log \left(1-P_{i}\right)\right) \\
P_{i} & =\operatorname{logit}^{-1}\left(X_{i} b\right)=\frac{1}{1+\exp \left(-X_{i} b\right)}
\end{aligned}
$$

Logit needs to be estimated by an interative maximization method

Logit Model

In logit, $\operatorname{Pr}\left(Y_{i}=1\right)$ not Y_{i} is directly a function of $X_{i} \beta$

- Probabilty of $Y_{i}=1$:

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=1\right) & =f\left(X_{i} \beta\right) \\
& =\frac{1}{1+\exp \left(-\left(X_{i} \beta\right)\right)} \\
& =\operatorname{logit}^{-1}\left(X_{i} \beta\right)
\end{aligned}
$$

- Alternative interpretation, log odds ratio $(\log (p /(1-p)))$:

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=1\right) & =\pi_{i} \\
\operatorname{logit}\left(\pi_{i}\right) & =\alpha+X_{i} \beta
\end{aligned}
$$

```
summary(glm(voterep ~ income, data = nes_sample,
            family = binomial(link = "logit")))
##
## Call:
## glm(formula = voterep ~ income, family = binomial(link = "logit"),
## data = nes_sample)
##
## Deviance Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & \(1 Q\) & Median & \(3 Q\) & Max \\
\#\# & -1.0738 & -1.0066 & -0.8793 & 1.3584 & 1.5838
\end{tabular}
##
## Coefficients:
## Estimate Std. Error z value Pr(> P||)
## (Intercept) -1.25311 0.27045 -4.633 3.6e-06 ***
## income 0.16741 0.06276 2.668 0.00764 **
## -.-
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1311.4 on 999 degrees of freedom
## Residual deviance: 1304.1 on 998 degrees of freedom
## AIC: 1308.1
##
## Number of Fisher Scoring iterations: 4
```


Example of Linear Probability Model

Vote for Bush in U.S. Presidential Election 1992


```
summary(glm(vote_yes ~ statusquo, data = Chile,
        family = binomial(link = "logit")))
##
## Call:
## glm(formula = vote_yes ~ statusquo, family = binomial(link = "logit"),
## data = Chile)
##
## Deviance Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & \(1 Q\) & Median & 30 & Max \\
\#\# & -2.4942 & -0.4747 & -0.2290 & 0.5747 & 2.8140
\end{tabular}
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.21597 0.06955 -17.48 <2e-16 ***
## statusquo 2.08971 0.07805 26.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 3242.0 on 2518 degrees of freedom
## Residual deviance: 1874.9 on 2517 degrees of freedom
## (181 observations deleted due to missingness)
## AIC: 1878.9
##
## Number of Fisher Scoring iterations: 5
```


Example of Linear Probability Model

Vote Intention in Chilean Plebiscite in 1973

Logit Coefficients are Less Transparent

Linear Regression Coeficients

$$
\frac{\partial Y}{\partial X_{j}}=\frac{\partial}{\partial X_{j}}\left(\alpha+\beta_{1} X_{1}+\ldots \beta_{k} X_{k}\right)=\beta_{j}
$$

Coefficient equals the marginal effect of x
Logistic Regression Coeficients
$\frac{\partial \operatorname{logit}(Y)}{\partial X_{j}}=\frac{\partial}{\partial X_{j}}\left(\frac{1}{1+\exp \left(\alpha+\beta X_{i}\right)}\right)=\operatorname{Pr}\left(Y=1 \mid X_{i}\right) \operatorname{Pr}\left(Y=0 \mid X_{i}\right) \beta_{j}$
or

$$
\frac{\partial \operatorname{logit}(Y)}{\partial X_{j}}=\frac{\partial}{\partial X_{j}} X_{i} \beta_{j}=\beta_{j}
$$

Coefficient does not equal the marginal effect of x_{j}

Linear Probability Model

Logit Models

LPM vs. Logit

References

The LPM Strikes Back

- LPM has renewed popular among econometricians, causal inference folks -
- See the debate here
- OLS is still Min MSE linear approx of Conditional Expectation Function
- If the functional form is wrong ; but so it logit / probit. And the functional form is always wrong;
- OLS coefficients are a good estimate of the average marginal effects even if not good for the marginal effects at a given x.
- OLS coefficients are directly interpretable
- Angrist and Pischke recommend LPM with heteroskedasticity consistent errors

Average Marginal Effects

- The average marginal effect summarizes the marginal effect $\frac{\partial y}{\partial x_{j}}$ averaging over the sample of x.

$$
\text { Avg. Marginal Effect of } x_{j}=\left.\frac{1}{n} \sum_{i} \frac{\partial Y}{\partial x_{j}}\right|_{X_{i}}
$$

- In OLS, the marginal effect of x_{j} (assuming no interactions, polynomials, etc.) is simply the coefficient

$$
\left.\frac{\partial y}{\partial x_{j}}\right|_{x_{i}}=\frac{1}{n} \sum_{i} \hat{\beta}_{j}=\hat{\beta}_{j}
$$

- In Logit, the average

$$
\left.\frac{\partial y}{\partial x_{j}}\right|_{x_{i}}=\frac{1}{n} \sum_{i} \operatorname{Pr}\left(y_{i}=1 \mid \hat{\beta}, x_{i}\right) \operatorname{Pr}\left(y_{i}=0 \mid \hat{\beta}, x_{i}\right) \hat{\beta}_{j}
$$

Comparing Average Marginal Effects of Logit and LPM

 1992 U.S. Election Example```
mod <- glm(voterep ~ income, data = nes_sample,
 family = binomial(link = "logit"))
mod_aug <- augment(mod, type.predict = "response")
mean(mod_aug$.fitted * (1 - mod_aug$.fitted) * coef(mod)[2])
[1] 0.03847867
lm(voterep ~ income, data = nes_sample)
##
Call:
lm(formula = voterep ~ income, data = nes_sample)
##
Coefficients:
\begin{tabular}{lrr}
\#\# & (Intercept) & income \\
\#\# & 0.20679 & 0.03811
\end{tabular}
```


## Comparing Average Marginal Effects of Logit and LPM

Chile Plebiscite Example

```
mod <- glm(vote_yes ~ statusquo, data = Chile,
 family = binomial(link = "logit"))
mod_aug <- augment(mod, type.predict = "response")
mean(mod_aug$.fitted * (1 - mod_aug$.fitted) * coef(mod)[2])
[1] 0.2436621
lm(vote_yes ~ statusquo, data = Chile)
##
Call:
lm(formula = vote_yes ~ statusquo, data = Chile)
##
Coefficients:
(Intercept) statusquo
0.3447 0.3215
```


# Linear Probability Model 

Logit Models

LPM vs. Logit

References

## References

- Fox, Ch. 14
- Gelman and Hill, Ch 5. This should have most material you need.
- Chile Plebicite example: Fox, Ch. 14. Data from arm package dataset Chile.
- Bush vote in 1992 example: Gelman and Hill, Ch 5. Data from http://www.stat.columbia.edu/~gelman/arm/examples/ARM Data.zip as ARM_Data/nes/nes5200_processed_voters_realideo.dta.

