POLS/CS\&SS 503:

Advanced Quantitative Political Methodology TRANSFORMATIONS

May 5, 2015

Jeffrey B. Arnold
CENTER for STATISTICS
and the SOCIAL SCIENCES
(c)(i)()(2)

Overview

Logarithms and Power Transformations

Linear Transformations of Regressions

Transforming Dependent Variable

Residuals and Misspecification

Life Expectancy (years) on GDP per capita (2007)

Residuals and Misspecification

Residuals of Life Expectancy (years) on GDP per capita (2007)

Residuals and Misspecification

Life Expectancy (years ${ }^{4}$) on log GDP per capita (2007)

Residuals and Misspecification

Residuals of Life Expectancy (years ${ }^{4}$) on log GDP per capita (2007)

Logarithms and Power Transformations

Linear Transformations of Regressions

Transforming Dependent Variable

Interpreting Logarithms

How would you interpret the following?

- GDP per $\operatorname{cap}_{i}=\alpha+\beta \log (\operatorname{school})_{i}$
- log GDP per $\operatorname{cap}_{i}=\alpha+\beta(\text { school })_{i}$
- log GDP per cap ${ }_{i}=\alpha+\beta \log (\text { school })_{i}$

Linearizing Functions

Can you linearize these functions by taking the logarithms of both sides?
Exponential

$$
y_{i}=e^{\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon_{i}}
$$

Yes

$$
\log y_{i}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon_{i}
$$

Gravity Equation

$$
\operatorname{trade}_{i j}=\frac{\alpha \operatorname{GDP}_{i}^{\beta_{1}} \mathrm{GDP}_{j}^{\beta_{2}}}{\delta d_{i j}^{\beta_{3}}}
$$

Yes

$$
\log \operatorname{trade}_{i j}=(\log \alpha+\log \delta)+\beta_{1} \log \mathrm{GDP}_{i}+\beta_{2} \mathrm{GDP}_{j}-\beta_{3} d_{i j}
$$

Cobb-Douglas Production Function

$$
y=\alpha x_{1}^{\beta} x_{2}^{\gamma}
$$

Yes

$$
\log y=\log \alpha+\beta \log x_{1}+\delta \log x_{2}
$$

CES Production Function

$$
y=\alpha\left(\delta x_{1}^{\rho}+(1-\delta) x_{2}^{\rho}\right)^{\gamma / \rho}
$$

No

$$
\log y=\log \alpha+(\gamma / \rho) \log \left(\delta x_{1}^{\rho}+(1-\delta) x_{2}^{\rho}\right)
$$

Can't simplify $\log \left(\delta x_{1}^{\rho}+(1-\delta) x_{2}^{\rho}\right)$.

Close to $0, \log (1+x) \approx x$

Why can diff in logs be interpreted as a $\% \Delta$

Note: $\log (1+r) \approx r$ when r small
Then,

$$
\begin{aligned}
\log (x)-\log (x(1+r)) & =\log (1+r) \approx r \\
& =\% \Delta x / 100
\end{aligned}
$$

This property only holds for the natural logarithm.

Box-Cox Family of Transformations

\#\# Warning: Removed 95 rows containing missing values (geom_path).

Plot for $\lambda=0.25,0.5,0,2,4,8$ for $x=(0,4]$

Box-Cox Family of Transforms

$$
\begin{cases}f(x, \lambda)=\frac{x^{\lambda}-1}{\lambda} & \text { if } \lambda \neq 0 \\ f(x, \lambda)=\log x & \text { if } \lambda=0\end{cases}
$$

- Can solve for λ to transform x to be symmetric.
- car function: powerTransform, bcTransform.
- In regression: If know λ can transform y or x.

Logarithms and Power Transformations

Linear Transformations of Regressions

Transforming Dependent Variable

- Do not change the fit (R^{2}, SSE) of OLS
- Can be useful (sometimes) for interpretation

Linear Transformations of Regression

Scalar Multiplication

$$
y=\alpha+\beta x_{i}+\epsilon
$$

Multiplying x_{i} by a just changes the slope to βa

$$
y=\alpha+(\beta a) x_{i}+\epsilon
$$

Linear Transformations of Regression

Scalar Addition

$$
y=\alpha+\beta x_{i}+\epsilon
$$

Adding a constant c to x_{i}

$$
y=\alpha+\beta\left(x_{i}+c\right)+\epsilon
$$

Standardized Coefficients / Regressors

$$
y=\alpha+\beta_{0}+\beta_{1} \frac{x_{i}-\bar{x}}{\operatorname{SD}(x)}+\epsilon_{i}
$$

- Can be useful for default interpretation (controversial)
- But about same as comparing $x+\mathrm{SD}(x)$ post-estimation.
- Bad for skewed variables, binary variables?
- Transform regressors, not functions of regressors.
- Gelman: Continuous: divide by 2 SD (x); Binary: center at mean.
- No need for them for default interpretation. With computational power, simulations better.
- Very important to standardize X in machine learning applications, or anywhere with complicated optimization problems.

Logarithms and Power Transformations

Linear Transformations of Regressions

Transforming Dependent Variable

Logit Transformation

- Suppose $Y \in(0,1)$
- The logit transformation $\tilde{y}=\log (y /(1-y))$,

$$
\log \left(\frac{y}{1-y}\right)=\beta_{0}+\beta_{1} x_{1}+\cdots+\epsilon
$$

- What if original data included 0 s or 1 s
- Not a "logit model", linear regression with logit transformed response variable

