R-squared

Jeffrey Arnold

May 10, 2016

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

R-squared, similar model fit stats, and advice on what to do

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. R-squared
- 2. Adjusted R-squared
- 3. Standard error of the regression
- 4. F-test
- 5. Advice

Several definitions of R^2

Ratio of variance of fitted values to sample y

$$R^2 = rac{\mathsf{Var}(\hat{m{y}})}{\mathsf{Var}\,m{y}}$$

Ratio of variance "explained" by the regression

$$R^2 = 1 - SSE/SST = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - ar{y})^2}$$

For bivariate regression, correlation of Y and X squared,

$$R^2 = \operatorname{Cor}(\boldsymbol{x}, \boldsymbol{y})^2$$

• $R^2 \in [0,1]$ where 1 is all points are on a line/plane

R-squared is dependent on scale of X

<□▶ <□▶ < □▶ < □▶ < □▶ = □ のQ(

R-squared is dependent on scale of X

Same data, regression on subset

In-sample fit always increases as variables are added

<□> <四> <四> <四> <三> <三> <三</td>

) Q (

R^2 always increases as variables are added

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Other problems with R²

- 1. Does not measure goodness of fit
 - 1.1 To get R^2 large, make X spread out
 - 1.2 To get \mathbb{R}^2 small, make X not spread out
- 2. Does not measure prediction
- 3. Cannot compare different datasets (including transformed Y)

4. Not variance "explained" in causal sense

Adjusted R^2

Adjust R^2 for sample size and variables,

$$R^2 = 1 - \frac{SSE/(N-K-1)}{SST/(N-1)}$$

- Slightly penalizes R^2 for more variables
- Adjustment only relevant for cases where $N \approx K$
- Atheoretical
- Doesn't fix any important problem with R^2 .
- Pointless for comparing models

Standard error of the regression (*sigma*)

$$\hat{\sigma} = \sqrt{\frac{1}{N - K - 1} \sum \varepsilon_i^2}$$

"Average" error

▶ RMSE is similar, with denominator N instead of N - K - 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- On the same scale as y substantive interpretation
- Often suggested as alternative to R^2

Problems with $\hat{\sigma}$

- 2. All insample problems with R^2 apply to $\hat{\sigma}$
- 3. To interpret $\hat{\sigma}$ need to compare to scale (variance) of **y**, but then almost the same as R^2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

F-test

- R^2 and $\hat{\sigma}$ are statistics, but generally not used in tests
- *F*-test with $H_0: \beta_1 = \cdots = \beta_K = 0$
- F-statistic is a function of the SSE of models
- Inherits most of the same problems as R²
- Assumes that linear model is correct, not whether it is a good model

What to do about it?

- 1. Focus on what's important:
 - 1.1 If prediction: out of sample performance
 - 1.2 If causation:
 - identification of β (omitted variable bias or design)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- assumptions of model (other diagnostics)
- 2. Focus on results/average of many models not the "best" model

Next time

Comparing predictive performance of models using cross-validation

References

 Gary King "How Not to Lie With Statistics: Avoiding Common Mistakes in Quantitative Political Science."

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Cosmo Shalizi, F-Tests, R2, and Other Distractions.
- Gelman and King. R-squared: useful or evil?